Элемент Пельтье: характеристики, принцип работы и применение

Элемент Пельтье это термоэлектрический преобразователь, который создает разность температур на своих поверхностях при протекании электрического тока. Принцип действия основан на эффекте Пельтье – возникновении разности температур в месте контакта проводников под действием электрического тока.

  • Устройство и принцип действия элемента Пельтье.
  • Применение.
  • Достоинства и недостатки.
  • Параметры элементов Пельтье.
  • Эксплуатационные требования к элементам Пельтье.
  • Термоэлектрический модуль Пельтье TEC1-12706. Параметры, характеристики.

Устройство и принцип действия элемента Пельтье.

Думаю, что только знатоки физики могут понять, как на самом деле работает элемент Пельтье. Для практиков главное, что существует минимальная единица модуля – термопара, представляющая из себя два соединенных проводника p и n типа.

При пропускании через термопару тока, происходит поглощение тепла на контакте n-p и выделение тепла на p-n контакте. В результате, участок полупроводника, примыкающий к  n-p переходу, будет охлаждаться, а противоположный участок – нагреваться. Если поменять полярность тока, то на оборот, n-p участок будет нагреваться, а противоположный – охлаждаться.

Существует и обратный эффект. При нагревании одной из сторон термопары, вырабатывается электрический ток.

Для практического применения энергии поглощения тепла одной термопары недостаточно. В термоэлектрическом модуле используется много термопар. Электрически их соединяют последовательно. А конструктивно – так, что охлаждающие и нагревающие переходы расположены на разных сторонах модуля.

Термопары установлены между двух керамических пластин. Соединяются они медными шинами. Количество термопар может доходить до нескольких сотен. От их количества зависит мощность модуля.

Разность температур между горячей и холодной стороной модуля Пельтье может достигать 70 °C.

Надо понимать, что термоэлектрический модуль Пельтье снижает температуру одной стороны, относительно другой. Т.е. чтобы холодная сторона имела низкую температуру, необходимо отводить тепло от горячей поверхности, снижая ее температуру.

Для увеличения перепада температур, возможно последовательное (каскадное) соединение модулей.

Применение.

Термоэлектрические модули Пельтье применяются:

  • в небольших бытовых и автомобильных холодильниках;
  • в охладителях воды;
  • в системах охлаждения электронных приборов;
  • в термоэлектрических генераторах.

Я, используя элемент Пельтье, сделал холодильник для вина.

 Достоинства и недостатки модулей Пельтье.

Как-то неправильно сравнивать элементы Пельтье с компрессорными охлаждающими установками. Совсем разные устройства – большая механическая система с компрессором, газом, жидкостью и маленький полупроводниковый компонент. А больше сравнивать не с чем. Поэтому достоинства и недостатки модулей Пельтье весьма условное понятие. Есть области, в которых они не заменимы, а в других случаях их применение совершенно нецелесообразно.

К достоинству элементов Пельтье можно отнести:

  • отсутствие механически движущихся частей, газов, жидкостей;
  • бесшумная работа;
  • небольшие размеры;
  • возможность обеспечивать как охлаждение, так и нагревание;
  • возможность плавного регулирования мощности охлаждения.

Недостатки:

  • низкий кпд;
  • необходимость в источнике питания;
  • ограниченное число старт-стопов;
  • высокая стоимость мощных модулей.

Параметры элементов Пельтье.

  • Qmax (Вт) – холодопроизводительность, при максимально-допустимом токе и разности температур между горячей и холодной сторонами равной 0. Считается, что вся тепловая энергия поступающая на холодную поверхность, мгновенно, без потерь передается на горячую.
  • Delta Tmax (град) — максимальная разность температур между поверхностями модуля при идеальных условиях: температура горячей стороны – 27 °C и холодная сторона с нулевой отдачей тепла.
  • Imax (А) – ток, обеспечивающий перепад температур delta Tmax.
  • Umax (В) – напряжение, при токе Imax и разности температур delta Tmax.
  • Resistance (Ом) – сопротивление модуля постоянному току.
  • COP (Сoefficient Of Рerformance) – коэффициент, отношение мощности охлаждения к электрической мощности, потребляемой модулем. Т.е. подобие кпд. Обычно 0.3-0.5.

Эксплуатационные требования к элементам Пельтье.

Модули Пельтье – капризные устройства. Их применение сопряжено с рядом требований, не выполнение которых приводит: к деградации модуля или выходу из строя, снижению эффективности системы.

  • Модули выделяют значительное количество тепла. Для отвода тепла должен быть установлен соответствующий радиатор. Иначе:
    • Невозможно достичь нужной температуры холодной стороны, т.к. элемент Пельтье снижает температуру относительно горячей поверхности.
    • Допустимый нагрев горячей стороны как правило + 80 °C ( в высокотемпературных до 150 °C). Т.е. модуль может просто выйти из строя.
    • При высоких температурах кристаллы модуля деградируют, т.е. снижается эффективность и срок службы модуля.
  • Важен надежный тепловой контакт модуля с радиатором охлаждения.
  • Источник питания для модуля должен обеспечивать ток с пульсациями не более 5%. При более высоком уровне пульсаций эффективность модуля снизится, по некоторым данным на 30-40%.
  • Не допустимо, для управления элементом Пельтье, использовать релейные регуляторы. Это приведет к быстрой деградации модуля. Каждое включение – выключение вызывает деградацию полупроводниковых термопар. Из-за резких изменений температуры между пластинами модуля возникают механические напряжения в местах спайки с полупроводниками. Производители элементов Пельтье нормируют  количество циклов старт-стопов модуля. Для бытовых модулей это порядка 2019 циклов. Релейный регулятор выведет из строя модуль Пельтье за 1-2 месяца.
  • К тому же элемент Пельтье обладает высокой теплопроводностью между поверхностями. При выключении, тепло радиатора горячей стороны, через модуль будет передаваться на холодную сторону.
  • Недопустимо, для регулирования мощности на элементе Пельтье, использовать ШИМ модуляцию.
  • Чем надо питать элемент Пельтье источником тока или напряжения? Обычно используют источник напряжения. Он проще в реализации. Но вольт-амперная характеристика модуля Пельтье нелинейная и крутая. Т.е. при небольшом изменении напряжения ток меняется значительно. И вдобавок, характеристика меняется при изменении температуры поверхностей модуля. Надо стабилизировать мощность, т.е. произведение тока через модуль на напряжение на нем. Охлаждающая способность элемента Пельтье напрямую связана с электрической мощностью. Конечно, для этого необходим достаточно сложный регулятор.
  • Напряжение модуля зависит от количества термопар в нем. Чаще всего это 127 термопар, что соответствует напряжению 16 В. Разработчики элементов рекомендуют подавать до 12 В, или 75% Umax. При таком напряжении обеспечивается оптимальная эффективность модулей.
  • Модули имеют герметичное исполнение, их можно использовать даже в воде.
  • Полярность модуля отмечена цветами проводов – черный и красный. Как правило, красный (положительный) провод расположен справа, относительно холодной стороны.

Мною был разработан контроллер элемента Пельтье для холодильника, удовлетворяющим всем этим требованиям. Он:

  • Вырабатывает питание для элемента Пельтье с пульсациями не более 2%.
  • Стабилизирует на модуле электрическую мощность, т.е. произведение тока на напряжение.
  • Обеспечивает плавное включение модуля.
  • Регулировка температуры происходит по принципу аналогового регулирования, т.е. плавного изменения мощности на элементе пельтье.
  • Контроллер разработан для холодильника, поэтому математика регуляторов учитывает инерционность охлаждения воздуха в камере.
  • Обеспечивает контроль температуры горячей стороны модуля и управление вентилятором.
  • Имеет высокий кпд, широкие функциональные возможности.

Термоэлектрический модуль Пельтье TEC1-12706.

Это самый распространенный тип элемента Пельтье. Используется во многих бытовых приборах. Не дорогой, с неплохими параметрами. Хороший вариант для изготовления маломощных холодильников, охладителей воды и т.п.

Характеристики модуля TEC1-12706 привожу в переводе на русский из документации TEC1-12706.pdf компании производителя – HB Corporation.

Технические параметры TEC1-12706.

 Обозначение Параметр Значение, при температуре горячей стороны
 25 °C 50 °C
 Qmax Холодопроизводительность  50 Вт 57 Вт
 Delta Tmax Разность температур  66 °C 75 °C
 Imax Максимальный ток 6.4 А 6.4 А
 Umax Максимальное напряжение 14.4 В 16.4 В
 Resistance Сопротивление 1.98 Ом 2.3 Ом

Графические характеристики.

Габаритный чертеж модуля TEC1-12706.

 Обозначение Размер
 A  40 мм
 B  40 мм
 C  3.8 мм

Рекомендации по эксплуатации.

  • Максимально – допустимая температура 138 °C.
  • Не допустимо превышение значения параметров Imax и Umax.
  • Срок службы 200 000 часов.
  • Параметр частота отказов основан на длительных испытаниях с выборкой 0.2%.
  • Производитель — HB Corporation.

Пример разработки на элементе Пельтье — холодильник для вина.

Автор публикации


56

Комментарии: 1305Публикации: 147Регистрация: 13-12-2015

Элементы Пельтье называются специальные термоэлектрические преобразователи, работающие по принципу Пельтье. (образования разности температур при подключении электрического тока, другими словами, термоэлектрический охладитель).

Ни для кого не секрет, что электронные устройства при работе греются. Нагрев отрицательно влияет на процесс работы, поэтому, чтобы как-то охладить приборы, в корпус устройств встраивают специальные элементы, называющиеся по имени изобретателя из Франции – Пельтье. Это малогабаритный элемент, который может охлаждать радиодетали на платах устройств. При его установке собственными силами никаких проблем не возникнет, монтаж в схему производится обычным паяльником.

1 — Изолятор керамический
2 — Проводник n — типа
3 — Проводник p — типа
4 — Проводник медный

В ранние времена вопросы охлаждения никого не интересовали, поэтому это изобретение осталось без применения. Два века спустя, при использовании электронных устройств в быту и промышленности, стали применять миниатюрные элементы Пельтье, вспомнив об эффекте французского изобретателя.

Принцип действия

Чтобы понять, как работает элемент на основе изобретения Пельтье, необходимо разобраться в физических процессах. Эффект заключается в соединении двух материалов с токопроводящими свойствами, обладающими различной энергией электронов в районе проводимости. При подключении электрического тока к зоне связи, электроны получают высокую энергию, для перехода в зону с более высокой проводимости второго полупроводника. Во время поглощения энергии проводники охлаждаются. При течении тока в обратную сторону происходит обычный эффект нагревания контакта.

Вся работа осуществляется на уровне решетки атома материала. Чтобы лучше понять работу, представим газ из частиц – фононов. Температура газа имеет зависимость от параметров:

  • Свойства металла.
  • Температуры среды.

Предполагаем, что металл состоит из смеси электронного и фононного газа, находящегося в термодинамическом равновесии. Во время касания двух металлов с различной температурой, холодный электронный газ перемещается в теплый металл. Создается разность потенциалов.

На стыке контакта электроны поглощают энергию фононов и отдают ее на другой металл фононам. При смене полюсов источника тока, весь процесс будет обратного действия. Разность температур будет возрастать до того момента, пока имеются в наличии свободные электроны с большим потенциалом. При их отсутствии наступит уравновешивание температур в металлах.

Если на одну сторону пластины Пельтье установить качественный теплоотвод в виде радиатора, то вторая сторона пластины создаст более низкую температуру. Она будет ниже на несколько десятков градусов, чем окружающий воздух. Чем больше значение тока, тем сильнее будет охлаждение. При обратной полярности тока холодная и теплая сторона поменяются друг с другом.

При соединении элемента Пельтье с металлом, эффект становится незначительным, поэтому практически устанавливают два элемента. Их количество может быть любым, это зависит от потребности в мощности охлаждения.

Эффективность действия эффекта Пельтье зависит от того, насколько точно выбраны свойства металлов, силы тока, протекающей по прибору, скорости отвода тепла.

Сфера использования

Чтобы применить практически элемент Пельтье, ученые произвели несколько опытов, показавших, что повышение отвода тепла достигается увеличением числа соединений 2-х материалов. Чем больше число спаев материалов, тем выше эффект. Чаще в нашей жизни такой элемент служит для охлаждения электронных устройств, уменьшения температуры в микросхемах.

Вот их некоторые области использования:

  • Устройства ночного видения.
  • Цифровые камеры, приборы связи, микросхемы, нуждающиеся в качественном охлаждении, для лучшего эффекта картинки.
  • Телескопы с охлаждением.
  • Кондиционеры.
  • Точные часовые системы охлаждения кварцевых электрических генераторов.
  • Холодильники.
  • Кулеры для воды.
  • Автомобильные холодильники.
  • Видеокарты.

Элементы Пельтье часто используются в системах охлаждения, кондиционирования. Есть возможность достижения довольно низких температур, что открывает возможность применения для охлаждения оборудования с повышенным нагревом.

В настоящее время специалисты используют элементы Пельтье в акустических системах, выполняющих роль кулера. Элементы Пельтье не создают никаких звуков, поэтому бесшумность является одним из их достоинств. Такая технология стала популярной из-за мощной отдачи тепла. Элементы, изготовленные по современной технологии, имеют компактные размеры, радиаторы охлаждения поддерживают определенную температуру долгое время.

Достоинством элементов является длительный срок службы, потому что они сделаны в виде монолитного корпуса, неисправности маловероятны. Простая конструкция обычного широко применяемого вида простая, состоит из двух медных проводов с клеммами и проводами, изоляции из керамики.

Это небольшой перечень мест применения. Он расширяется за счет устройств бытового назначения, компьютеров, автомобилей. Можно отметить использование элементов Пельтье в охлаждении микропроцессоров с высокой производительностью. Ранее в них устанавливались только вентиляторы. Теперь, при монтаже модуля с элементами Пельтье значительно снизился шум в работе устройств.

Будут ли меняться схемы охлаждения в обычных холодильниках на схемы с использованием эффекта Пельтье? Сегодня вряд ли это возможно, так как элементы имеют низкий КПД. Стоимость их также не позволит применить их в холодильниках, так как она достаточно высока. Будущее покажет, насколько будет развиваться это направление. Сегодня проводятся эксперименты с твердотельными растворами, аналогичными по строению и свойствам. При их использовании цена модуля охлаждения может уменьшиться.

Обратный эффект элементов Пельтье

Технология подобного вида имеет особенность с интересными фактами. Это заключается в эффекте образования электрического тока путем охлаждения и нагревания пластины модуля Пельтье. Другими словами, он служит генератором электрической энергии, при обратном эффекте.

Такие генераторы электричества существуют пока чисто теоретически, но можно надеяться на будущее развитие этого направления. В свое время французский изобретатель не нашел применения своему открытию.

Сегодня этот термоэлектрический эффект широко используется в электронике. Границы применения постоянно расширяются, что подтверждается докладами и опытами исследователей и ученых. В будущем бытовая и электронная техника станет обладать совершенными инновационными возможностями. Холодильники станут бесшумными, так же, как и компьютеры. А пока модули Пельтье монтируют в разные схемы для охлаждения радиодеталей.

Преимущества и недостатки

Достоинствами элементов Пельтье можно назвать следующие факты:

  • Компактный корпус элементов, позволяет монтировать его на плату с радиодеталями.
  • Нет движущихся и трущихся частей, что повышает его срок службы.
  • Позволяет соединение множества элементов в один каскад, по схеме, позволяющей уменьшать температуру очень горячих деталей.
  • При смене полярности питающего напряжения элемент станет работать в обратном порядке, то есть, стороны охлаждения и нагрева поменяются местами.

Недостатками можно назвать такие моменты:

  • Недостаточный коэффициент действия, влияющий на увеличение подводимого тока, для достижения необходимого перепада температур.
  • Довольно сложная система отведения тепла от поверхности охлаждения.
Как изготовить элементы Пельтье для холодильника

Изготовить такие элементы Пельтье можно самому быстро и просто. Для начала нужно определиться с материалом пластин. Нужно взять пластины элементов из прочной керамики, приготовить проводники в количестве больше 20 штук, для того, чтобы обеспечить наибольший перепад температур. При достаточном числе элементов КПД произойдет значительное увеличение производительности холодильника.

Большую роль играет мощность применяемого холодильника. Если он действует на жидком фреоне, то с производительностью проблем не возникнет. Пластины элементов монтируются возле испарителя, смонтированного вместе с двигателем. Для такого монтажа понадобится некоторый набор прокладок и инструмента. Таким образом, обеспечится быстрое охлаждение нижней части холодильника.

Необходима тщательная изоляция проводников, только после этого их подключают к компрессору. После окончания монтажа нужно проверить напряжение мультиметром. При нарушении работы элементов (например, короткое замыкание), сработает терморегулятор.

Другие применения термоэлектрических модулей

Эффект модуля Пельтье применяется сегодня, благодаря законам физики. Избыточная энергия элементов всегда пригодится там, где необходима бесшумный и быстрый обмен теплом.

Основные места использования модулей:

  • Охлаждение микропроцессоров.
  • Двигатели внутреннего сгорания выпускают отработанные газы, которые ученые стали применять для образования вспомогательной энергии с помощью термоэлектрических модулей. Полученная таким способом энергия подается снова в мотор, в виде электричества. Это создает экономию топлива.
  • В бытовых устройствах, действующих на нагревание или охлаждение.

Охлаждающий кулер может превратиться в нагреватель, а холодильник может выполнять функцию теплового шкафа, если изменить полярность постоянного тока. Это называется обратимым эффектом.

Такой принцип применяют в рекуператорах. Он состоит из бокса из двух камер. Они между собой сообщаются вентилятором. Элементы Пельтье нагревают холодный воздух, поступающий снаружи, с помощью энергии, которая извлечена из теплого воздуха в помещении. Такое устройство экономит расходы на отопление помещений.

Похожие темы:
  • Терморезисторы. Виды и особенности. Устройство и работа. Параметры
  • Тепловые реле. Виды и устройство. Особенности и принцип действия
  • Свойства полупроводников. Устройство и принцип действия
  • Эффект Зеебека. Работа и применение. Особенности и устройство

В 2019 году французский учёный-физик Жан Шарль Пельтье, исследуя воздействие электричества на проводники, обнаружил очень интересный эффект. Если пропускать ток через два разнородных проводника, находящихся в непосредственной близости друг от друга, то один из этих проводников начинает сильно греться, а второй, наоборот, сильно охлаждаться. Количество выделяемого и поглощаемого тепла, напрямую зависит от силы и направления электрического тока. Если поменять направление тока, то поменяются местами холодная и горячая стороны. Чуть позже этот феномен получил название эффекта Пельтье и был благополучно забыт из-за практической невостребованности на тот момент.

И лишь спустя сто с лишним лет, с расцветом полупроводниковой эры, появилась настоятельная необходимость в компактных, недорогих и эффективных охладителях. Так, в 60х годах 20 века появились первые полупроводниковые термоэлектрические модули, которые получили название элементы Пельтье.

Термоэлемент Пельтье

В основе любого термоэлектрического модуля лежит тот факт, что разные проводники имеют разные уровни энергии электронов. Иными словами, один проводник можно представить как высокоэнергетическую область, второй проводник, как низкоэнергетическую область. При контакте двух токопроводящих материалов, во время пропускания через них электрического тока, электрону из низкоэнергетической области необходимо перейти в высокоэнергетическую область.

Этого не произойдет, если электрон не приобретёт необходимое количество энергии. В момент поглощения этой энергии электроном, происходит охлаждение места контакта двух проводников. Если поменять направление протекания тока, возникнет, наоборот, эффект нагревания места контакта.

Можно использовать любые проводники, но этот эффект становится физически заметным и значимым только в случае использования полупроводников. Например, при контактировании металлов, эффект Пельтье настолько незначителен, что практически незаметен на фоне омического нагрева.

Устройство модуля

Термоэлектрический модуль (ТЭМ), независимо от своего размера и места применения состоит из разного количества, так называемых термопар. Термопара — это тот самый кирпичик, из которых строится любой ТЭМ. Она состоит из двух полупроводников различающихся типом проводимости. Как известно, существуют два типа проводимости p и n типа. Соответственно существует и два типа полупроводников. Два этих разнородных элемента соединяются в термопаре с помощью медного мостика. В качестве полупроводников применяют соли таких металлов, как висмут, теллур, селен или сурьма.

ТЭМ — совокупность подобных термопар, соединённых друг с другом последовательно. Все термопары располагаются между двух керамических пластин. Пластина Пельтье. Пластины изготовлены из нитрида или оксида алюминия. Непосредственно само количество термопар в одном элементе может варьировать в очень широких пределах, от нескольких штук, до нескольких сотен или тысяч.

Иными словами, элементы Пельтье могут быть абсолютно любой мощности, от сотых долей, до нескольких сот или тысяч ватт. Постоянный ток последовательно проходит через все термопары и в результате верхняя керамическая пластина охлаждается, а нижняя, наоборот, греется. Если поменять направление тока, то пластины поменяются местами, верхняя начнёт греться, а нижняя охлаждаться.

В работе элемента присутствует одна особенность, которую активно используют для усиления охлаждающей эффективности этого приспособления. Как известно, при пропускании тока через элемент Пельтье возникает разность температур между поверхностью, разогревающейся и поверхностью охлаждающейся. Так вот, если ту поверхность, что активно нагревается подвергнуть принудительному охлаждению. Например, с помощью специального кулера, то это приведёт к ещё более сильному охлаждению поверхности, то есть той, что охлаждается. При этом разница температур с окружающим воздухом может достигнуть нескольких десятков градусов.

Достоинства и недостатки

Как у любого технического устройства, у термоэлектрического модуля есть свои достоинства и свои недостатки:

  • Небольшие размеры. А если быть, точнее, ТЭМ может быть любого размера, от микроскопического, до гигантского.
  • Отсутствие в конструкции движущихся элементов, что делает устройство абсолютно бесшумным в работе.
  • Отсутствие в конструкции жидкостных или газовых наполнителей, что делает устройство предельно простым как в устройстве, так и в работе.
  • В зависимости от направления тока, ТЭМ может быть как охлаждающим элементом, так и нагревающим.
  • Основным недостатком ТЭМа является его низкий коэффициент полезного действия, по сравнению с холодильными установками компрессорного типа, работающими на фреоне.

Проблема повышения КПД у ТЭМов упирается в неразрешимую пока, техническую головоломку. Свободные электроны обладают, по сути, двойной природой, что на практике проявляется и они одновременно являются переносчиками как электрического тока, так и тепловой энергии. Как следствие, высокоэффективный элемент Пельтье должен быть изготовлен из материала, обладающего одновременно двумя взаимоисключающими свойствами. Материал этот должен хорошо проводить электрический ток и плохо проводить тепло. Пока такого материала не существует в природе, но учёные активно работают в этом направлении.

Технические характеристики

Все термоэлектрические модули обладают соответствующими техническими характеристиками:

  • Qmax — холодопроизводительность. Она вычисляется исходя из максимально допустимого тока и разности температур между противоположными поверхностями. Величина измеряется в Ваттах.
  • DTmax — максимальный температурный перепад между поверхностями элемента. Измеряется в градусах.
  • Imax — допустимая сила тока, которая необходима для возникновения максимального температурного перепада.
  • Umax — максимально допустимое напряжение.
  • Resistence — внутреннее сопротивление устройства.
  • COP (coefficient of perfomance) — коэффициент эффективности. Это и есть КПД элемента. Показывает отношение охлаждающей мощности, к потребляемой. У самых продвинутых моделей этот коэффициент чуть не дотягивает до 0.5. У более простых не превышает 0.2—0.3.

Применение ТЭМов

Несмотря на серьёзный недостаток присущий всем без исключения элементам Пельтье, а именно очень низкий КПД, эти устройства нашли довольно широкое применение как в науке и технике, так и в быту.

Термоэлектрические модули являются важными элементами конструкции таких устройств, как:

  • Мобильные холодильники. В частности, автохолодильники.
  • Переносные термогенераторы. Для получения электроэнергии в труднодоступных местах.
  • Системы охлаждения в современных компьютерах.
  • Автомобильные кондиционеры.
  • Кулеры как для охлаждения, так и для нагрева воды.
  • Осушители воздуха.
  • Лабораторные охлаждающие инкубаторы.

Элемент Пельтье в руках домашнего мастера

Нужно сразу оговориться, самостоятельное изготавливание термоэлектрического элемента занятие по меньшей мере бессмысленное и никому не нужное. Если только изготавливающий не является учеником седьмого класса и не закрепляет таким образом, полученные на уроках физики, знания.

Гораздо проще купить новый термоэлектрический элемент в соответствующем магазине. Благо стоят они недорого и недостатка в выборе конкретной модели не наблюдается. А кроме того, что в них нечему ломаться или изнашиваться, любой термоэлемент, снятый со старого компьютера или автомобильного кондиционера, не будет отличаться по своим техническим характеристикам от нового.

Наибольшей популярностью пользуется модель термоэлемента: TEC1—12706. Размеры этого устройства 40 на 40 миллиметров. Состоит он из 127 термопар, соединённых между собою последовательно. Рассчитан на ток в 5 А, при напряжении цепи 12 В. Стоит такой элемент в среднем от 200 до 300 рублей. Но можно найти и за сто, или, вообще, за так, если снять со старого компьютера или какого другого ненужного устройства.

Изготовить с помощью такого элемента можно, как минимум два очень интересных и полезных в хозяйстве устройства.

Как сделать холодильник своими руками

Производство портативных холодильников, в частности, для машин целиком основано на эффекте Пельтье. Для изготовления подобного устройства в домашних условиях понадобиться:

  • Термоэлемент марки TEC1—12706. Стоит 200 рублей в ближайшем магазине (специализированном).
  • Радиатор и вентилятор. Снимаются с отслужившего своё старого компьютера.
  • Контейнер. Любая ненужная ёмкость из пластика, металла или дерева. Снаружи и изнутри такая ёмкость оклеивается теплосберегающими пластинами из пенопласта или пенополистирола.

Термоэлектрический модуль встраивается в крышку контейнера. В этом случае поступление холода будет происходит сверху вниз, что приведёт к равномерному охлаждению ёмкости. Изнутри контейнера, в его крышку с помощью термопасты и крепёжных болтов прикрепляют радиатор.

Для того чтобы увеличить мощность будущего холодильного устройства, можно увеличить количество термоэлементов, до двух-трёх и более. В этом случае модули приклеиваются друг к другу, с соблюдением полярности. Иными словами, горячая сторона нижележащего элемента контактирует с холодной стороной вышележащего.

Снаружи на крышку крепится ещё один радиатор вместе с компьютерным кулером. В месте крепежа радиаторов должна быть хорошая термоизоляция между холодной — внутренней и горячей — внешней сторонами. Необходимо очень аккуратно стягивать верхний и нижний радиаторы крепёжными болтами, чтобы не треснули керамические пластины, располагающихся между ними термоэлементов.

Электричество подключается с помощью блока питания, который можно взять от старого компьютера.

Портативный термоэлектрогенератор

Такая мини-электростанция может очень выручить туриста или охотника, когда в лесу сядут батареи всех электронных гаджетов. Очень романтично в этой ситуации взять несколько сухих щепок и шишек, развести небольшой костерок и с его помощью зарядить разряженные аккумуляторы, а заодно и поесть приготовить. Именно это позволяет сделать портативный термогенератор, построенный на термоэлементе.

Для постройки этого чудо-девайса необходимо наличие портативной походной печки, работающей на любом виде топлива. В крайнем случае сгодится даже небольшая свечка или таблетка сухого спирта.

В печке разводят огонь, а снаружи с помощью термопасты к ней крепится термоэлектрический модуль. Посредством проводов он подключается к преобразователю напряжения.

Величина получаемого тока напрямую будет зависеть от разницы температур между холодной и горячей сторонами термоэлемента. Для эффективной работы необходима разница между холодной и горячей поверхностью как минимум в 100 градусов.

В этом случае необходимо понимать, что максимальная температура ограничена температурой плавления припоя, с помощью которого изготовлен сам модуль. Поэтому для подобных устройств используют специальные термомодули, которые изготавливают с помощью специального тугоплавкого припоя. В обычных модулях температура плавления припоя составляет 150 градусов. В модулях тугоплавких, припой начинает плавиться при температуре 300 градусов.

Что такое элемент Пельтье – электро-, термопреобразователь, который состоит из нескольких пар ( в отдельных случаях одной) полупроводников различных по свойству типов («n» и «р»), последние соединяются перемычками из металла – в основном это — медь. На практике данное устройство создает температурную разность на разных концах поверхности при протекании энергии электрического тока.

  • Принцип работы элемента Пельтье
  • Как работает элемент Пельтье
  • Основные эксплуатационные характеристики элемента Пельтье
  • Достоинства и недостатки модуля Пельтье
  • Область применения элементов Пельтье

Одним из наиболее простейших вариантов данного устройства Пельтье в практическом использовании является модификация ТЕС1-12706, изображенная на рисунке 1.

Элемент Пельтье – преобразователь термический, электрический ТЕС1-12706

Принцип работы элемента Пельтье

В корне принципа работы положен термоэлектрический эффект Пельтье. Другими словами — при протекании и под действием электрического тока создается разница температур в местах контактов термопар — полупроводников «n» и «р» — типа.

Элементы Пельтье – доволи таки «чувствительные устройства» к перегреву и высоким температурам. К ним предъявляются высокие требования к эксплуатации, при невыполнении которых, устройство быстро выходит из строя. Очень важно отводить тепло, для этой цели необходимо устанавливать радиатор или вентилятор, в противном случае не достигается температура холодной стороны относительно горячей.

Как работает элемент Пельтье

Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.

Принцип работы элемента Пельтье

В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n — p и процесс выделения тепловой энергии на p — n контакте. В итоге часть термопары полупроводника, который сопрягается с n — p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны — соответственно, нагреваться.

В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.

Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.

Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.

Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.

Устройство элемента Пельтье

Основными элементами термопреобразователя являются: полупроводники р — типа, n — типа, керамические пластины, медные сопряжения — проводники; контакты подвода электрического тока «плюс» и «минус». Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.

Основные эксплуатационные характеристики элемента Пельтье

Данное устройство в целом идеально работает в тех случаях, когда хорошо и надежно контактируют термопары с охладительным устройством, будь то радиатор охлаждения или вентилятор охлаждения со змеевиком, то есть – хороший теплосъем.

Модули Пельтье, как их часто называют, очень чувствительны к перепадам по току и напряжению (не более 5 %). Под действием высоких температур (наиболее критическая для элементов до 150 градусов) эффективность снижается во много раз (до 40 %) и модуль очень быстро ломается.

Как правило, в схему работы полупроводниковых элементов недопустимым условием является приспособление релейных устройств: ограничивающих мощность или регулирующих. Это приводит к деградации кристаллических составляющих и к неисправности в скором времени элемента.

Частое включение и выключение устройств также негативно влияет на работу и срок эксплуатации, и его долговечность функционирования. Согласно законов физики — любой нагрев материала приводит к его тепловому расширению, а охлаждение — к сжатию. Соответственно, особенно слабыми местами в полупроводниковых элементах являются «паечные», где из-за механического движения возможно появление дефектов в виде микротрещин и в конце концов к разрыву цепи.

Коэффициент теплопроводности термических пар элемента Пельтье достаточно высок, что с одной стороны является достоинством, а с другой стороны ограничивает срок эксплуатации и расчетное число циклов «стоп-старт-стоп».

Достоинства и недостатки модуля Пельтье

Сравнивать устройство Пельтье с другими охладительными установками с различным приводом в принципе невозможно и нецелесообразно, так как в первом случае имеют полупроводниковые материалы в виде кристаллов, а во втором случае рабочее тело — газ или жидкость ( к примеру: компрессорный холодильник). В различных областях применяются и те и другие устройства.

К преимуществам элементов Пельтье можно отнести:

  • полное отсутствие механики движения и вращающихся частей, а также жидкостей, газов;
  • абсолютно нет шума работы устройств;
  • сравнительно малые размеры;
  • двухфункциональность: нагревание и охлаждение при изменении полярности;

К недостаткам можно отнести:

  • относительно низкий коэффициент полезного действия;
  • требование постоянного источника энергии, питания;
  • число пусков и остановов ограничено;
  • плавность отключения и включения термоэлектрических устройств;
  • контроль нагрева с одной стороны или охлаждения с другой с помощью вентилятора.

Опрос: Понятно ли что такое и как устроен Элемент Пельтье (Кол-во голосов: 3)

Да, понял с первого раза

Пришлось перечитать несколько раз, чтобы понять

Нет, не понял вообще

Чтобы проголосовать, кликните на нужный вариант ответа.
Результаты

Область применения элементов Пельтье

Основной и наиболее широким применением термоэлектрические преобразователи нашли в следующих приборах, аппаратах и устройствах:

  • автохолодильники и бытовые аппараты;
  • водо- и воздухоохладители;
  • в электронных приборах и устройствах также в качестве охлаждения;
  • в генераторах электротермических.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Текущая версия страницы пока

не проверялась

опытными участниками и может значительно отличаться от

версии

, проверенной 15 сентября 2017;
проверки требуют

15 правок

.

Текущая версия страницы пока

не проверялась

опытными участниками и может значительно отличаться от

версии

, проверенной 15 сентября 2017;
проверки требуют

15 правок

.

Элемент Пельтье — это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье — возникновении разности температур при протекании электрического тока. В англоязычной литературе элементы Пельтье обозначаются TEC (от англ. Thermoelectric Cooler — термоэлектрический охладитель).

Эффект, обратный эффекту Пельтье, называется эффектом Зеебека.

Принцип действия[править | править код]

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.

В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твёрдого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу — противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Достоинства и недостатки[править | править код]

Достоинством элемента Пельтье являются небольшие размеры, отсутствие каких-либо движущихся частей, а также газов и жидкостей. При обращении направления тока возможно как охлаждение, так и нагревание — это даёт возможность термостатирования при температуре окружающей среды как выше, так и ниже температуры термостатирования.
Также достоинством является отсутствие шума.

Недостатком элемента Пельтье является более низкий коэффициент полезного действия, чем у компрессорных холодильных установок на фреоне, что ведёт к большой потребляемой мощности для достижения заметной разности температур. Несмотря на это, ведутся разработки по повышению теплового КПД, а элементы Пельтье нашли широкое применение в технике, так как без каких-либо дополнительных устройств можно реализовать температуры ниже 0 °C.

Основной проблемой в построении элементов Пельтье с высоким КПД является то, что свободные электроны в веществе являются одновременно переносчиками и электрического тока, и тепла. Материал для элемента Пельтье же должен одновременно обладать двумя взаимоисключающими свойствами — хорошо проводить электрический ток, но плохо проводить тепло.

В батареях элементов Пельтье[1] возможно достижение большей разницы температур, но мощность охлаждения будет ниже. Для стабилизации температуры лучше использовать импульсный источник питания, так как это позволит повысить эффективность системы. При этом желательно сглаживать пульсации тока – это увеличит эффективность работы Пельтье и, возможно, продлит срок его службы. Также, работа элемента Пельтье будет неэффективной, если пытаться стабилизировать температуру с использованием широтно-импульсной модуляции тока.

Применение[править | править код]

Элементы Пельтье применяются в ситуациях, когда необходимо охлаждение с небольшой разницей температур или энергетическая эффективность охладителя не важна. Например, элементы Пельтье применяются в ПЦР-амплификаторах, маленьких автомобильных холодильниках, охлаждаемых банкетных тележках, применяемых в общественном питании, так как применение компрессора в этом случае невозможно из-за ограниченных размеров, и, кроме того, требуемая мощность охлаждения невелика.

Кроме того, элементы Пельтье применяются для охлаждения устройств с зарядовой связью в цифровых фотокамерах. За счёт этого достигается заметное уменьшение теплового шума при длительных экспозициях (например в астрофотографии). Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах.

Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров с тем, чтобы стабилизировать длину волны излучения.

В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30—40 градусов ниже, чем с помощью обычных компрессионных охладителей (до −80 °C для одностадийних холодильников и до −120 °C для двухстадийных).

Некоторые энтузиасты используют модуль Пельтье для охлаждения процессоров при необходимости экстремального охлаждения без азота.[2][3] До азотного охлаждения использовали именно такой способ.

«Электрогенератор Пельтье» — модуль для генерации электричества, термоэлектрический генераторный модуль, аббревиатура GM, ТGM. Данный термогенератор состоит из двух основных частей:

  1. непосредственно преобразователь разницы температур в электричество на модуле Пельтье,
  2. источник тепловой энергии для нагрева преобразователя (например, газовая или бензиновая горелка, твердотопливная печь и т. д.)

Примечания[править | править код]

См. также[править | править код]

  • Термоэлектрогенератор
  • Холодильный компрессор

Ссылки[править | править код]

  • Охлаждение процессора ПК элементом Пельтье, HardwarePortal.ru, 2002
  • Что такое элемент Пельтье, его устройство, принцип работы и практическое применение, Авг 10, 2017